
Manual for PeTeR
Version 2.1.0

Christian Lorentzen

December 15, 2016

1 Introduction
The flexible C++ program PeTeR [1] was developed for the purpose of performing the
expensive numerical computation of the resummed cross section according to [2, 3, 4],
i.e. the transverse momentum distribution of electroweak boson production at hadron
colliders (γ, Z, W±, H). It consists of two parts, the Unix-like command-line program
peter, which provides a user-friendly interface, and libpeter, which contains all the
computational ingredients. libpeter is a library, and as such it may easily be used to
build other programs.
So far, PeTeR is able to calculate the NLL, N2LL, N3LL resummed cross sections as

well as the corresponding singular ones, LO, NLOsing and NNLOsing. In addition, the
full NLO fixed-order results for vector boson and for Higgs production are implemented
and were extensively cross-checked against QT [5, 6]1 and HqT2.0 [7].
PeTeR includes the full two-loop hard functions for electroweak boson production

computed in [4], but for simplicity the tiny two-loop contributions which arise when
a neutral vector boson couples to an internal quark loop2 are neglected (Nv

V and Na
V ,

cf. Eqs.(5.2) and (5.3) of [4]).

2 Installation
The code can be downloaded from http://peter.hepforge.org/. The gzipped tar
file unpacks into a directory PeTeR-k.m.n, where k.m.n denotes the version number.
Change into this directory and type

./configure
make

A successful compilation creates src/libpeter/libpeter.a and src/peter/peter. It
is possible to run the code directly inside src/peter. In order to install/copy peter
and libpeter into /usr/local type

1I am grateful for discussions with Richard Gonsalves.
2The axial part at two-loop level is still unknown. It is, however, already very small at one loop.

1

http://peter.hepforge.org/

make install

Super user privileges may be necessary (type sudo make install). The directory can
be changed by the option --prefix=directory of the configure command.
If the library LHAPDF [8], version 5.4.0 or higher (but still version 5, version 6 is

not yet tested), is installed, its capabilities can be included by specifying the configure
option --with-LHAPDF. If the LHAPDF library is installed in a non-standard directory,
i.e. the executable lhapdf-config is not in a directory included in the environment
variable $PATH, one has to specify the complete path to the executable lhapdf-config

./configure --with-LHAPDF \
LHAPDF_CONFIG=/path-to-lhapdf-config/lhapdf-config

How to choose a pdf from LHAPDF in the executable peter is explained in the next
chapter. More details about the installation process are given in the file INSTALL and
by invoking ./configure --help.

3 Command Line peter

In order to facilitate the user interface of the command line program peter, the whole
command line parsing is done by the boost/program_options library [9]. After storing
all input parameters, peter calls the function sigma_pT of libpeter. Note that peter
automatically takes advantage of parallelization on multi-core processors by the build-in
functionality of the CUBA library [10]. An overview of library dependencies is depicted
in Figure 1. A simple call peter -h produces the following detailed help message:

peter

libpeter

cuba lhapdf

optional

boost

Figure 1: Dependencies of peter

Call: peter [options]

Description: Specify at least one option otherwise ’-h’ is assumed.
Peter calculates the transverse momentum distribution
of electroweak boson production at colliders such as the LHC:
dsigma/dpT[pbarn] of hadron + hadron -> V + X.

2

See http://peter.hepforge.org/ for more informations.

Allowed options:
-h [--help] Print help message.
--version Print version number.
-v [--verbosity] arg (=1) Set the level of verbosity:

0=silent
1=input values (reusable as

input file by copy paste)
2=add pdf information if available

(not yet working for LHAPDF)
-f [--configfile] arg Set the name for a configuration file

that will be parsed. Command line input
overwrites config file input.

--boson arg (=1) Set the boson being produced:
0 = Photon
1 = Z
2 = W+
3 = W-
4 = Higgs

--collider arg (=0) Set the collider:
0 = proton-proton
1 = proton-antiproton
2 = antiproton-antiproton

--cms-energy arg (=8000) Set cms-energy sqrt(S) [GeV].
-p [--transverse-momentum] arg (=100)

Set pT start point [GeV].
--pT-steps arg (=1) Set the number of pT points to be

calculated.
--pT-step-size arg (=10) Set the step size between pT points

[GeV].
--log-scale [=arg(=1)] (=0) If true, set logarithmic steps.

i=0..n-1, n=pTsteps, d=pT-step-size
linear: pTstep(i) = pT + i*d, i=0..n-1
log: pTstep(i) = pT *
((pT+(n-1)*d)/pT)^(i/(n-1))
So both cases start with pT and end
with pT + (n-1)*d.

--min-rapidity arg (=-1000000) Set minimal rapidity.
--max-rapidity arg (=1000000) Set maximal rapidity.
--hard-scale arg (=-1) Set hard scale muH[GeV]. The general

scale choices are
>0 : mu = input [GeV]
-1 : mu = (13 pT + 2 M)/12 -

pT^2/sqrt(S)
-2 : mu = (7 pT + 2 M)/12 * (1 - 2

pT/sqrt(S))
-3 : mu = mu_jet^2/mu_hard
-4 : mu = sqrt(pT^2 + M^2)

3

where M is the boson mass.
Option -3 is forbidden for the hard
scale.

--jet-scale arg (=-2) Set jet scale muJ [GeV]. Same options
as hard scale. Option -3 is forbidden.

--soft-scale arg (=-3) Set soft scale muS [GeV]. Same options
as hard scale.

--factorization-scale arg (=-1) Set factorization scale muF [GeV]. Same
options as hard scale. If jet, soft and
factorization scale are equal, eta
equals 0. For each partonic channel,
the singularity 1/Gamma[eta] is treated
by expanding in eta for |eta| < 0.001.

--hard-scale-factor arg (=1) Multiply the hard scale.
--jet-scale-factor arg (=1) Multiply the jet scale.
--soft-scale-factor arg (=1) Multiply the soft scale.
--factorization-scale-factor arg (=1) Multiply the factorization scale.
--flavors arg (=5) Set the number of active flavors.
--order-resum arg (=0) Set the order of resummation:

3 = N^3LL
2 = NNLL
1 = NLL
0 = fixed-order LO (no resummation)

-1 = fixed-order NLO (no resummation)
-2 = matched NNLL+NLO
-3 = matched N^3LL+NLO

For resummed results: h*j*s, log(U),
eta are expanded up to
alphas^(order-1). If all scales are set
equal to muF one gets the
singular/threshold expanded cross
section N^xLOsing with x=order-1.
For fixed-order results: muR=hard
scale, muF=fact. scale.
For matched results:
resummed(muH,muJ,muS,muF) + nlo(muF) -
nlo_sing(muF).
Please note that the matched results
(-1,-2,-3) for photon production are
incomplete (!) since they do not
include the NLO photon fragmentation
contribution. To obtain finite results
without fragmentation, the photon mass
parameter needs to be kept at a
non-zero value and acts as a collinear
cutoff.

--order-alphas arg (=0) Set the order of the running of alphas:
0 = 1-loop (beta0)
1 = 2-loop (beta1)

4

2 = 3-loop (beta2)
3 = 4-loop (beta3).

--alphas-epsrel arg (=1e-06) Set the relative precision for the
computation of the running of alphas.
Newton’s method quits with a warning
after 1000 iterations if accuracy is
not reached.

--with-triangles [=arg(=1)] (=0) Include triangle contributions for b
and t quarks (only Z bosons). Quark
masses >= 10^6 GeV are treated as
infinitely heavy.

--with-two-loop-const [=arg(=1)] (=0) Include the two loop constant in the
hard function. Without it, the alphas^2
part of the hard function is normalized
as h2(muH=pT)=0.

--with-ct2-evolution [=arg(=1)] (=1) For Higgs only: If true, the top-quark
matching scale mut=mass_t. If false,
mut=muH. For resummed and fixed-order
results, the Wilson coefficient Ct2 is
evaluated at scale mut, the cross
section is multiplied by the evolution
factor U_Ct2(mut,muH). Note that
U_Ct2(muH,muH)=1. For strict
fixed-order results, i.e.
order-resum=-1 (NLO), one has to set
this option to false.

--no-hard [=arg(=1)] (=0) Switch off the hard function, i.e. sets
hard functions to 1.

--no-jet [=arg(=1)] (=0) Switch off the jet function, i.e. sets
jet functions to 1.

--no-soft [=arg(=1)] (=0) Switch off the soft function, i.e. sets
soft functions to 1.

--scale-variation arg (=0) Compute theoretical errors from scale
variation by a factor of 1/2 and 2:

0: Don’t compute scale variation.
1: Add the errors in the additional

columns scale+ and scale-.
2: Additionally output the scale

varied cross sections.
For LO, NLO and singular: The scale
muF=muR is varied up and down. Then, a
parabola is fitted through the 3 points
mu_var/mu=(1/2,1,2), and max and min
values in this interval minus the
central value (mu_var/mu=1) give the
error estimates.
Resummed and matched: Same procedure,
but each scale muH, muJ, muS and muF is
varied separately. The individual

5

errors are added in quadrature.
Note: The central value (mu_var/mu=1)
might differ from the one computed
without scale variation (within the
given integration error), as the 3 and
9 cross sections, respectively, are
computed at once. As the scale
variation is usually larger than a few
percent, one might consider setting
cuba-epsrel not too small.

--subtractions arg (=2) Set the order of subtractions of the
resummed integrand. 0-2 are
implemented.

--MH arg (=126) Set Higgs boson mass [GeV].
--MP arg (=1) Set photon mass [GeV]. See option

order-resum.
--MZ arg (=91.1874) Set Z boson mass [GeV].
--MW arg (=80.381) Set W boson mass [GeV].
--sin2theta arg (=0.22296) Set sin^2(theta_w).
--alpha arg (=0.00781592) Set electroweak coupling constant

alpha.
--GF arg (=1.16638e-05) Set Fermi constant GF. It is used for

Higgs production only (instead of
alpha,...).

--alphas arg (=0.11707) Set strong coupling constant alphas at
MZ.

--mu-alphas arg Set the default scale for alphas.
Default is MZ.

--Vud arg (=0.97427) Set CKM matrix element Vud.
--Vus arg (=0.22534) Set CKM matrix element Vus.
--Vub arg (=0.00351) Set CKM matrix element Vub.
--Vcd arg (=0.2252) Set CKM matrix element Vcd.
--Vcs arg (=0.97344) Set CKM matrix element Vcs.
--Vcb arg (=0.0412) Set CKM matrix element Vcb.
--Vtd arg (=0.00867) Set CKM matrix element Vtd.
--Vts arg (=0.0404) Set CKM matrix element Vts.
--Vtb arg (=0.999146) Set CKM matrix element Vtb.
--mass-b arg (=0) Set the b-quark mass.
--mass-t arg (=173.5) Set the t-quark mass.
--pdf-type arg (=0) Set the pdf type:

-1 = fake pdfs ’x*(1-x)’
0 = MSTW2008nnlo
1 = LHAPDF

--pdf-filename arg For LHAPDF, set the filename of the pdf
including the full path.

--pdf-member arg (=0) For LHAPDF, set the member of the pdf
(if it has different members).

--cuba-routine arg (=3) Set the integration routine of cuba:
0 = Vegas

6

1 = Suave
2 = Divonne
3 = Cuhre

For more informations see the
documentation of the CUBA library.

--cuba-epsrel arg (=0.001) Set the maximal relative error of
integration.

--cuba-epsabs arg (=1e-20) Set the maximal absolute error of
integration.

--cuba-verbosity arg (=0) Set the verbosity level of the cuba
integration.

--cuba-seed arg (=0) Set the seed for the pseudo-number
generator and chooses the generator.

--cuba-level arg (=0) Choses the random number generator:
seed | level | generator

0 | any | Sobol q
!=0 | 0 | Mersenne-Twister p
!=0 | !=0 | Ranlux p

q=quasi-random, p=pseudo-random
--cuba-mineval arg (=0) Set minimum number of integrand

evaluations required.
--cuba-maxeval arg (=100000) Set the (approximate) maximum number of

integrand evaluations allowed.
--cuba-last-sampling arg (=0) It true, only the last (largest) set of

samples is used in the final result.
--cuba-smoothing arg (=1) (Vegas and Suave only) If true, apply

additional smoothing to the importance
function, this moderately improves
convergence for many integrands.

--cuba-nnew arg (=2000) (Suave only) Set the number of new
integrand evaluations in each
subdivision (approximate).

--cuba-flatness arg (=25) (Suave only) Set a flatness parameter.
The flater the higher the value might
be.

--cuba-key0 arg (=9) (Cuhre only) Choses the basic
integration rule. key0=7,9,11,13
selects the cubature rule of degree
key0. Note that the degree-11 rule is
available only in 3 dimensions, the
degree-13 rule only in 2 dimensions.
For other values, the default rule is
taken: degree-13 in 2 dimensions,
degree-11 in in 3, degree-9 otherwise.
The pT-spectrum of on-shell bosons has
a 3 dimensional integration (y,x,mx2).

--cuba-key1 arg (=47) (Divonne only) Determine sampling in
the partition phase.

--cuba-key2 arg (=1) (Divonne only) Determine sampling in

7

the final integration phase.
--cuba-key3 arg (=1) (Divonne only) Set the strategy for the

refined phase.
--cuba-maxpass arg (=5) (Divonne only) Control the thoroughness

of the partitioning phase integration
phase.

--cuba-border arg (=1e-10) (Divonne only) Set the width of the
border of the integration region. Use a
non-zero border if the integrand
subroutine cannot produce values
directly on the integration boundary.

--cuba-maxchisq arg (=10) (Divonne only) Set the maximum chi^2
value a single subregion is allowed to
have in the final integration phase.

--cuba-mindeviation arg (=0.25) (Divonne only) Set a bound, given as
the fraction of the requested error of
the entire integral, which determines
whether it is worthwhile further
examining a region that failed the
chi^2 test. Only if the two sampling
averages obtained for the region differ
by more than this bound is the region
further treated.

Options can be specified on the command line and by providing a configuration file via
--configfile filename (or -f filename). Note that the leading ‘--’ of the option
names must be omitted in configuration files and that command line input overwrites
configuration file input. If you call peter with --verbosity 1 (or -v1), it prints the
options in a format suitable for copy & paste into a configuration file. In addition, the
file sampleInput.txt in src/peter is a good starting point for your own configuration
file. The call

./peter -v0 -f sampleInput.txt --boson 4 --cms-energy 8000 \
--order-resum 2 -p 50 --pT-steps 4 --pT-step-size 50 --cuba-routine 2

produces an output that looks like

pT [GeV] dsigma/dpT [pbarn/GeV] error [pbarn/GeV] prob fail
50 0.0505339 5.06951e-05 4.10783e-06 0
100 0.0100421 1.00097e-05 1.67229e-08 0
150 0.0030726 3.1214e-06 1.75918e-05 0
200 0.0011569 1.13585e-06 7.11653e-14 0

The error is the presumed absolute error of integration, prob is the χ2-probability that
error is not a reliable error estimate, and fail evaluates to 0 if the desired accuracy
was reached; for more details see [10].
If you compiled PeTeR with LHAPDF, you can specify a pdf by the options --pdf

-type 1 --pdf-filename /path-to-share/lhapdf/PDFsets/xxx.LHgrid, where xxx

8

is the pdf name of your choice. As you see, the option pdf-filename requires the full
path of the pdf grid file.
As a last point, note that you can redirect the output of peter in the usual way,

e.g. peter 1> output.dat 2> error.log redirects the standard output into the file
output.dat and all warnings and error massages into error.log.

4 Library libpeter

Everything in the library libpeter is declared in the namespace peter. The main
function in the file sigma_pT.hpp

std :: vector <double > sigma_pT (const Cuba_Parameters & cp , const
Process_Data & pd , const SM_Parameters & sm , const PDF& pdf)

provided by the library libpeter integrates the cross section via the CUBA library and
returns the result as a vector in the form (pT , dσ

dpT
, error, prob, fail). The input is

given by the self explaining classes as shown above. The structure of the library can be
seen in Figure 2. In the following, we give short summaries of the most important header
files; the actual implementation might nevertheless be in the corresponding source file
(.cpp instead of .hpp).

alphas.hpp The running of αs up to 4-loop (β3) is implemented by solving the equation

ln µ
2

µ2
0

=
∫ αs(µ)

αs(µ0)
dα

(
−α

order∑
n=0

(
α

4π

)n+1
βn

)−1

(1)

for αs(µ) with Newton’s method. The integral is calculated analytically for the corre-
sponding value of order (option order-alphas).

mathfunctions.hpp Several special functions are implemented at double precision,
among these

• pow10: 10x

• dilog and cdilog: dilogarithm Li2(x) for real and complex arguments

• gamma: Euler gamma function Γ(x)

• polygamma: polygamma functions Ψ(n)(x) for n ∈ {0, 1, 2, 3, 4, 5, 6} (Higher n are
implemented but with less accuracy since they are not required.)

All of the above functions have been extensively checked against their Mathematica
implementations.

9

libpeter
sigma_pT

interfaces/settings integrands utility/computational

parameter

which_enums

cuba_parameters

sm_parameters

process_data

pdf

mstwpdf

mstw2008nnlo
LHAPDF

integrand_lo

integrand_nlo

integrand_resummed

alphas

boson_charges

expansion_list

math_functions

hpl1d & hpl2d

kinematics

leading_order_me

helicity_amplitudes

scet

scet_anomalous_dim

scet_hard_function

scet_jet_soft_function

scet_kernel

cuba

Figure 2: Schematic structure of libpeter. Blue boxes represent logical units, reddish
boxes represent files (without indication for vector bosons _V and higgs boson
_H, without file extensions .hpp and .cpp) or libraries.

hpl1d.hpp and hpl2d.hpp For the numerical computation of one- and two-dimensional
harmonic polylogarithms, as required for the two-loop hard functions, these files provide
full C++ versions of [11] and [12], which were originally written in Fortran.
The conversion has been achieved by modifying the Fortran code to comply to the C++

syntax. Apart from other differences between C++ and Fortran, the way of addressing
elements of arrays was trivialized by template classes Fortranarray1d, Fortranarray2d
and so forth. Schematically they look like
template <class T, const int n1 , const int n2 >
class FortranArray1d
{
private :

const static int n_ = n2 -n1 +1;
T value_ [n_];

10

public :
FortranArray1d () {

for (int n=0; n<n_; ++n) value_ [n] = T();
};

FortranArray1d (const T t[n_]) {
for (int n=0; n<n_; ++n) value_ [n] = t[n];

};

T operator () (int n) const {
if (n<n1 || n2 <n) {

/* error handling */
}
return value_ [n-n1];

};

T& operator () (int n) {
if (n<n1 || n2 <n) {

/* error handling */
}
return value_ [n-n1];

};

int size1 () { return n_ ;};
};

Thus, no statement of accessing array elements on which the Fortran code heavily
relies had to be changed. The evaluation of harmonic polylogarithms seems to be the
bottleneck for N3LL and NNLOsing computations with the option with-two-loop-const
enabled.

helicity_amplitudes.hpp The very long expressions for the helicity amplitudes nec-
essary for NNLO hard functions are implemented by automatic insertion of the prepro-
cessed expressions. It would be nice to implement the coefficients α, β, γ and δ of [13]
as classes with a common interface. The easiest and most standard way of achieving
this is to derive all of them from a common (base) class, which allows the storing of real
and imaginary parts of coefficients of different orders in αs, multiplying and complex
conjugating them. This approach, however, has one drawback: it calls virtual functions,
which are considered slow for high performance computations. Therefore, the magic of
the Curiously Recursive Template Pattern (CRTP) [14] is invoked. There is a template
class template <class Derived> class Coefficient, which provides the requested com-
mon interface. Every coefficient is then derived from a template of its own type, e.g.
class Alpha_2a : public Coefficient<Alpha_2a>.

expansion_list.hpp In order to achieve the expansion of hard times jet times soft
functions in αs, these functions return the type ExpList, which is a class storing the

11

order. Actually, ExpList is just an alias for ExpansionList<double>, while ExpansionList
<T> is a template class for any type T. The template function
template <class T>
ExpansionList <T> operator *(const ExpansionList <T>& left , const

ExpansionList <T>& right)
{

unsigned int order = left.order ();
if (right.order () < order) order = right.order ();
ExpansionList <T> result (order);
result [0] = left [0] * right [0];
if (order >= 1)
{

result [1] = left [0] * right [1] + left [1] * right [0];
}
if (order >= 2)
{

result [2] = left [0] * right [2] + left [2] * right [0] + left
[1] * right [1];

}
return result ;

};

provides the multiplication of two ExpansionList<T>s to the right order.

scet.hpp The header file scet.hpp simply includes scet_anomalous_dim.hpp, scet_-
hard_function.hpp, scet_jet_soft_function.hpp and scet_kernel_function.hpp.
These implement hard, jet and soft functions, evolution factors, the kernel and its deriva-
tives according to [2, 3, 4].

pdf.hpp There are two implementations for pdfs. One is an interface to the LHAPDF
library [15, 8]. Another is a modified version of MSTW [16, 17], mstwpdf.hpp. The pdf
mstw2008nnlo is hard coded in the C++ file mstw2008nnlo.cpp; neither an external data
file nor an IO-operation is required anymore. The tradeoff in memory space is negligible
for modern computers. An additional feature required for second subtractions is the
possibility to compute the first derivative in x of pdfs.

References
[1] Ch. Lorentzen, http://peter.hepforge.org.

[2] T. Becher, C. Lorentzen and M. D. Schwartz, Phys. Rev. Lett. 108 (2012) 012001
[arXiv:1106.4310 [hep-ph]].

[3] T. Becher, C. Lorentzen and M. D. Schwartz, Phys. Rev. D 86 (2012) 054026
[arXiv:1206.6115 [hep-ph]].

12

http://peter.hepforge.org
http://arxiv.org/abs/arXiv:1106.4310
http://arxiv.org/abs/arXiv:1206.6115

[4] T. Becher, G. Bell, C. Lorentzen and S. Marti, JHEP 1402 (2014) 004
[arXiv:1309.3245 [hep-ph]].

[5] R. Gonsalves, http://www.physics.buffalo.edu/gonsalves/ewbqt/.

[6] R. J. Gonsalves, J. Pawlowski and C. -F. Wai, Phys. Rev. D 40, 2245 (1989).

[7] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Nucl. Phys. B 737 (2006) 73
[hep-ph/0508068], http://theory.fi.infn.it/grazzini/codes.html.

[8] M.R. Whalley and A. Buckley, LHAPDF, http://lhapdf.hepforge.org/

[9] V. Prus, boost/program_options, http://www.boost.org

[10] T. Hahn, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043], http://www.
feynarts.de/cuba/.

[11] T. Gehrmann and E. Remiddi, Comput. Phys. Commun. 141 (2001) 296 [hep-
ph/0107173].

[12] T. Gehrmann and E. Remiddi, Comput. Phys. Commun. 144 (2002) 200 [hep-
ph/0111255].

[13] L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis and E. Remiddi,
Nucl. Phys. B 642 (2002) 227 [hep-ph/0206067].

[14] J.O. Coplien, C++ Rep. Volume 6 Issue 2 (1995), http://dl.acm.org/citation.
cfm?id=229227.229229

[15] M. R. Whalley, D. Bourilkov and R. C. Group, hep-ph/0508110.

[16] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63 (2009)
189 [arXiv:0901.0002 [hep-ph]].

[17] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, http://mstwpdf.hepforge.
org/

13

http://arxiv.org/abs/arXiv:1309.3245
http://www.physics.buffalo.edu/gonsalves/ewbqt/
http://theory.fi.infn.it/grazzini/codes.html
http://lhapdf.hepforge.org/
http://www.boost.org
http://arxiv.org/abs/hep-ph/0404043
http://www.feynarts.de/cuba/
http://www.feynarts.de/cuba/
http://arxiv.org/abs/hep-ph/0107173
http://arxiv.org/abs/hep-ph/0107173
http://arxiv.org/abs/hep-ph/0111255
http://arxiv.org/abs/hep-ph/0111255
http://arxiv.org/abs/hep-ph/0206067
http://dl.acm.org/citation.cfm?id=229227.229229
http://dl.acm.org/citation.cfm?id=229227.229229
http://arxiv.org/abs/hep-ph/0508110
http://arxiv.org/abs/arXiv:0901.0002
http://mstwpdf.hepforge.org/
http://mstwpdf.hepforge.org/

	1 Introduction
	2 Installation
	3 Command Line peter
	4 Library libpeter

